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Let E be a subspace of C(X ) and let R(E)= g�h : g, h # E ; h>0]. We make a
simple, yet intriguing observation: if zero is a best approximation to f from E, then
zero is a best approximation to f from R(E ).

We also prove that if [En] is dense in C(X) then for almost all f (in the sense
of category)

lim sup d( f, R(En))�d( f, En)=1.

That extends the results of P. Borwein and S. Zhou who proved it for the case when
En is the space of algebraic or trigonometric polynomials of degree n. � 1996

Academic Press, Inc.

1. Introduction

Consider an arbitrary function f # C[&1, 1] . Let Pn stand for the space of
polynomials of degree n and let Rn ,n stand for rational functions

{g
h

: g, h # Pn ; h>0= .

Let pn* be the best approximation to f from Pn . Then zero is the unique
best approximation from Rn , n to f & pn*.

Here is a short proof:

The function f & pn* equioscillates i.e. there are points !1 , ..., !n+2 #
[&1, 1] such that ( f & pn*)(!j)=*(&1) j & f & pn*& where *=\1 (say
*=&1). Now if & f & pn*&g�h&�& f & pn*& then g�h(!j)�0 for j even and
g�h(!j)�0 for j odd. Since h is strictly positive, the function g # Pn should
satisfy the same condition

g(!j)�0 for j even and g(!j)�0 for j odd.
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That forces g to have n+1 zeros and hence g=0. Examining this proof it
is easy to conclude that it has nothing to do with the nature of h, as long
as it is strictly positive. The only property of g that we used is that g and
p* belong to the same Chebyshev subspace of C[&1,1] .

It turns out that this statement (aside from uniqueness) holds true for
rational functions where the numerator and denominator come from
arbitrary subspaces of C(X ). This is the content of Theorem 2.1.

We then use this theorem to prove that for most of the functions (in the
sense of category) in C(X ) the rate of best approximation and the rate of
best rational approximation is the same. This is known for specific sub-
spaces (cf [1], [3]). We prove it for arbitrary subspaces of C(X ).

2. The Best Rational Approximation

Let X be a compact Hausdorff space, let C(X ) be the space of real-
valued continuous functions on X. If G and H are subspaces of C(X ) we
use

R(G, H ) :=[ g�h : g # G, h # H, h(x)>0 for all x # X].

To avoid trivialities we will always assume that H contains a strictly
positive function.

We will identifying the dual space (C(X ))* with the space of regular
Borel measures on X : M(X ), and the same letter may mean a measure or
a functional.

Finally if A is a subset of C(X ), and f # C(X)

d( f, A) :=inf& f&a& : a # A].

Theorem 2.1. Let f # C(X ) and G/C(X ) be a subspace such that there
exists g # G with & f& g*&=d( f, G). Then for every subspace H/C(X )

d( f & g*, R(G, H ))=& f & g*&.

Hence zero is a best approximation to f & g* from R(G, H ). Moreover if
X=[a, b] and G is Chebyshev then zero is the unique best approximation
from R(G, H ) to f & g*.

Proof. Since g* is the best approximation from G to f, hence there
exists a functional + # M(X ) such that

+=G i.e. +( g)=0 for all g # G. (1)

&+&=1; +( f&g*)=& f&g*& &+&. (2)

We adopt the logic of [2] for this particular case.
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Let a>0 be such that d( f&g*, R(G, H ))<a. Then there exists g # G,
h # H, h>0 such that for f� := g�h we have &( f&p*)& f� &<a.

On the other hand,

0{& f&p*&( |+| (h))=(( f+p*)+)(h)=| ( f&p*) h d+

=| (( f&p*)&f� ) h d++| f� h d+=| (( f&p*)& f� ) h d++| gd+

(since f� h= g)=| (( f&p*)& f� ) h d+

(since +=G)�&( f&p*)&f� & | hd |+| (since h is positive)<a |+|(h).

Thus a>& f&p*&=d( f, G ). The ``moreover'' part of the Theorem was
already proved in the Introduction. K

Remark. Theorem 2.1 is a very simple observation. Yet even in the sim-
ple case of C(X )=C[&1, 1] ; R(G, H)=Rn , n it is somewhat surprising. First
of all it provides a large class of functions for which the best rational
approximation is easily computed.

Second, it shows how easy it is to spoil a function for rational
approximation.

For instance d( |x|, Rn , n)te:- n. Add to |x| a polynomial of degree n
(namely &pn*) and the rate of approximation drops, and drops signifi-
cantly to 1�n, since d(( |x|&pn*), Rn ,n)=& |x|&pn*&t1�n.

3. Rates of Approximation

We now use the Theorem 2.1 to extend a result of P. Borwein and
S. Zhou (cf. [1], Theorem 1) from Rn ,n to R(Gn , Hn) for arbitrary Gn ,
Hn/C(X ).

Theorem 3.1. Let X be an infinite compact Hausdorff space. Let
Gn/C(X ) be a sequence of finite-dimensional subspaces such that

d( f, Gn) � 0 for all f # C(X ).

Then for all finite-dimesnional subspaces Hn/C(X ), the set

A :=[ f # C(X): lim sup[d( f, R(Gn , Hn))�d( f, Gn)]�1]

is the set of second category in C(X).
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Proof. We proceed as in [1]. Let G� n :=C(X)"Gn . Then G� n is open and
dense in C(X ). We consider sets

An=[ f # C(X ): there exists m(n)>n with

d( f, R(Gm , Hm))�d( f, Gm)>1&
1
n

; d( f, Gm){0].

Then A=(��
n=1 An) & (��

n=1 G� n). It remains to prove that each set An is
open and dense in C(X ). The proof that An is open is exactly the same as
in ([1], Theorem 1) and we refer to it for technical details. The idea,
however is very simple. For a fixed f # An choose = and $ so small that for
all f� with & f& f� &<$ we have

f� � Gn ; |d( f� , R(Gn , Hn))&d( f, R(Gn , Hn))|<=;

|d( f, Gn)&d( f� , Gn)|<=.

Since = is ``very small'' the ratio d( f� , R(GnHn))�d( f� , Gn) is still greater than
1&1�n.

We now turn to the density of An . Let f # C(X ). For arbitrary =>0 pick
'==�2 and let gm # Gm be such that & f & gm&<'; m>n. Let

Em :=span[ gm } hm+ g$m : gm , g$m # Gm , hm # Hm].

Since Gm and Hm are of finite dimension, so is Em . Let F be an arbitrary
function in C(X )"Em . Since Em is finite-dimensional, there exists e*m which
is a best approximation to F from Em . Denote

F :=(F&e*m)�&F&e*m&.

We now consider the function

.(x)= gm(x)+'F*(x).

Observe that & f&.&<'+'==. It remains to show that . # An . Indeed,
since Gm/Em we have

'�d(., Gm)=d('F*, Gm)�d('F*, Em)='.

Therefore

d(., Gm)='. (3)

Now let em�hm be an arbitrary element in R(Em , Hm). Then

.&
em

hm
='F*+ gm&

em

hm
='F*+

gmhm&em

hm
='F&

e$m
hm
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where e$m=em& gm hm is an arbitrary element in Em . Thus

d(., R(Em , Hm))=d('F*, R(Em , Hm))='.

The last equality follows from the Theorem 2.1.
Since Gm/Em we have

d(., R(Gm , Hm))�d(., R(Em , Hm))=';

which together with (3) implies

d(., R(Gm , Hm))�d(., Gm)�'�'=1>1&
1
n

and hence . # An . K
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